نامساوی های زیرجمعی ماتریسی برای (f(a+b و(f(a)+f(b

thesis
abstract

در سال 1999 اندو وژان یک نامساوی زیر جمعی برای توابع مقعر عملگری بدست آوردند. ما این نامساوی را به همه توابع مقعر توسعه می دهیم: ماتریس های نیمه معین مثبت a وb تابع مقعر غیرمنفی f روی (&,0] را در نظر می گیریم. برایس هر نرم متقرن داریم. ||| (f(a)+f(b) ||| > |||f(a+b)|||

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

نامساوی پوپویچی برای توابع ماتریسی با توان منفی

در این مقاله، با استفاده از مقادیر ویژه ماتریس‌ها و نامساوی عددی پوپویچی، این نامساوی برای اثر ماتریس‌های مثبت بیان شده است. به علاوه، با در نظر گرفتن توابع ماتریسی با توان منفی، نامساوی‌های ماتریسی از نوع پوپویچی به دست آمده است. نتایج به دست آمده در این مقاله، معکوس نامساوی‌های ماتریسی شناخته شده هستند.

full text

نامساوی های یانگ ماتریسی

نامساوی ها یکی از مهمترین حوزه های پژوهشی آنالیز ماتریسی هستند که از ابتدا مورد علاقه بسیاری از ریاضی دانان بوده و کاربردهایی در علوم مختلف از جمله محاسبات علمی، نظریه سیستم و کنترل، تحقیق در عملیات، فیزیک ریاضی، استاتیک، اقتصاد و مهندسی دارد. نخستین بار در سال $1934$ کتاب تقریبا جامعی با نام "نامساوی ها" cite{h} توسط هاردی، ltrfootnote{g. h. hardy} لیتل وود ltrfootnote{e. little...

15 صفحه اول

یک رابطه ماتریسی برای نامساوی گراس

در این رساله به این موضوع پرداخته می شود، که نامساوی اثر یک ماتریس می تواند به عنوان یک نسخه غیر جابجایی در نظر گرفته شود که از نامساوی گراس ناشی می شود. به سادگی اثبات حالت کلی تری از یک عملگر خطی کراندار روی یک فضای هیلبرت تعمیم داده می شود.

مساوی ها و نامساوی های نرمی برای عملگرهای ماتریسی

در این پایان نامه چندین مساوی و نامساوی نرمی برای عملگرهای ماتریسی را بیان می کنیم. این نتایج به ساختار عملگرهای ماتریسی چرخشی (متقارن) شامل نامساوی نوع پینچینگ برای نرم های بطور ضعیف یکانی پایا وابسته اند همچنین بیان می کنیم که نامساوی پینچینگ نرم های بطور ضعیف یکانی پایای a را کاهش می دهد. نامساوی های نرمی را برای بدست آوردن نامساوی های نوع پینچینگ بکار می بریم همچنین شرایط مساوی در این نام...

15 صفحه اول

بهبودهایی از نامساوی های توابع محدب هندسی برای عملگرها

در این مقاله، تظریفی از تابع محدب هندسی ارائه که به کمک آن چندین نامساوی شناخته شده از توابع محدب هندسی بهبود داده شده‌ است. در پایان نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است. نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023